

Magenta Journal De Healthymedi

Addressing Childhood Obesity in Urban Brazil: A Public Health Strategy for Prevention and Intervention

Maria S. Oliveira¹

¹Department of Public Health, University of São Paulo, Brazil

*Corresponding Author: Maria S. Oliveira

E-mail: maria.oliveirant@usp.br

Article Info

Article History: Received: 17 July 2024 Revised: 19 August 2024 Accepted: 22 September

2024

Keywords:

Childhood Obesity Public Health Interventions Urban Brazil

Abstract

Childhood obesity is a growing public health concern in urban Brazil, driven by socio-economic disparities, unhealthy dietary habits, and sedentary behaviors. This study aims to examine the key determinants of childhood obesity and assess the effectiveness of current public health interventions. A cross-sectional quantitative design was used to collect data from 1,000 children aged 5-14 in major urban areas, including São Paulo and Rio de Janeiro. The results reveal that children from lower socio-economic backgrounds are at higher risk of obesity due to limited access to healthy food and recreational spaces. Screen time was positively correlated with BMI, while physical activity was negatively correlated, indicating the importance of reducing sedentary behaviors and promoting active lifestyles. School-based physical activity programs were found to be effective in reducing obesity rates, though gaps in program reach and equity remain. The study concludes that a comprehensive, equity-focused public health strategy is essential for addressing childhood obesity in urban Brazil, with a particular emphasis on expanding access to physical activity programs and addressing socio-economic barriers to healthy living.

INTRODUCTION

Childhood obesity is a rapidly growing public health issue, affecting millions of children worldwide. The World Health Organization (WHO) estimates that the number of obese children has increased tenfold over the past four decades, with the problem now affecting both developed and developing nations (WHO, 2021). In Brazil, childhood obesity has become a significant public health concern, particularly in urban areas where lifestyle changes, such as increased consumption of processed foods and sedentary behavior, are prevalent (Sarni et al., 2022; Al-Ani & Al-Ani, 2024; Meisel etval., 2023). Urban environments provide easier access to fast food, sugary beverages, and limited spaces for physical activity, which contribute to the rising rates of obesity among children (Polyzou & Polyzou, 2024; Mahmood et al., 2024; Guo et al., 2021).

In recent years, childhood obesity in Brazil has seen a steady increase, with 32% of Brazilian children classified as overweight or obese (Pelegrini et al., 2021). These numbers are concerning as childhood obesity is associated with various short- and

long-term health risks, including diabetes, cardiovascular disease, and psychological issues such as low self-esteem (Putri et al., 2024; Močnik et al., 2021; Torres-Reyes et al., 2024). Furthermore, obese children are more likely to become obese adults, perpetuating a cycle of health problems that can burden Brazil's public health system (Ferreira et al., 2022; Rocha et al., 2024; Bodepudi et al., 2024).

Urban Brazil, especially in cities like São Paulo and Rio de Janeiro, faces unique challenges related to childhood obesity. High levels of socio-economic inequality, coupled with limited access to healthy food and recreational spaces, exacerbate the problem (Buonomo et al., 2020; McGowan et al., 2021; Hallum et al., 2020). Moreover, cultural factors, such as family food practices and societal norms around body image, further influence dietary habits and lifestyle choices among children (Kumanyika, 2008). Given the rapid urbanization of Brazil and the growing prevalence of obesity, there is an urgent need for effective public health strategies that can prevent and address childhood obesity in urban settings (Gupta et al., 2012).

Childhood obesity is a growing epidemic in urban areas of Brazil, threatening the health of future generations and straining the healthcare system. Current public health interventions are fragmented, under-resourced, and fail to address the cultural, socio-economic, and environmental factors that contribute to obesity in urban environments (Shaughnessy et al., 2024). Despite government efforts, such as nutrition education programs and physical activity campaigns, childhood obesity rates continue to rise, particularly in low-income, urban populations where access to health services is limited. This thesis seeks to investigate the factors contributing to childhood obesity in urban Brazil and propose an integrated public health strategy that incorporates prevention, early intervention, and treatment.

METHODS

Research Design

This study employs a quantitative research design to investigate the factors contributing to childhood obesity in urban Brazil and to assess the effectiveness of current public health interventions. Quantitative methods are appropriate for this research as they allow for the systematic collection of numerical data to quantify relationships between variables such as socio-economic status, dietary habits, physical activity, and obesity prevalence. The study will use a cross-sectional design, collecting data from a representative sample of children aged 5-14 in major urban areas, including São Paulo and Rio de Janeiro. This design is chosen to provide a snapshot of obesity trends and contributing factors at a specific point in time, allowing for statistical analysis and generalization of the findings to the wider population.

Population and Sample

The target population for this study is children aged 5-14 years residing in urban areas of Brazil, specifically in the cities of São Paulo and Rio de Janeiro, where childhood obesity rates are particularly high. The study will also include data from parents and guardians, as well as school administrators and public health officials who can provide insights into intervention programs.

Sampling Technique: A stratified random sampling method will be used to ensure that the sample is representative of different socio-economic groups within the urban population. The sample will be stratified by age, gender, and socio-economic status to capture diversity in lifestyle and dietary habits across different demographic groups.

Sample Size: The sample size will be calculated using the formula for population proportion with a 95% confidence level and a 5% margin of error. Based on previous studies and the population size of children in urban Brazil, a sample size of approximately 1,000 children will be targeted. This number will allow for robust statistical analysis and provide adequate power to detect significant differences between subgroups.

Data Collection Methods

To gather comprehensive data on childhood obesity and its determinants, multiple data collection tools will be utilized, including:

Structured Surveys: Surveys will be administered to the children's parents or guardians to collect data on socio-economic status, dietary habits, physical activity levels, and family health history. The survey will also include questions about parents' knowledge and attitudes toward childhood obesity and the public health interventions available in their communities. Anthropometric Measurements: Height, weight, and body mass index (BMI) will be measured for each child in the sample. These measurements will be taken by trained personnel following the guidelines established by the World Health Organization (WHO) for assessing childhood obesity. BMI will be calculated using the formula BMI = weight (kg) / height² (m²), and children will be classified as underweight, normal weight, overweight, or obese according to age- and sex-specific BMI percentiles. School and Public Health Data: Data on school-based health programs and local public health initiatives will be collected through structured interviews with school administrators and public health officials. This information will help evaluate the scope and effectiveness of current interventions targeting childhood obesity in urban Brazil.

Variables and Operational Definitions

The primary dependent variable in this study is childhood obesity, operationally defined as a BMI at or above the 95th percentile for children of the same age and sex, according to the WHO growth charts. The independent variables include:

Socio-economic status: Measured through household income, parental education level, and occupation. Dietary habits: Frequency of consumption of high-calorie foods, sugary beverages, fruits, and vegetables, measured using a food frequency questionnaire (FFQ). Physical activity levels: Measured using the Physical Activity Questionnaire for Children (PAQ-C), which assesses the frequency, duration, and intensity of physical activity. Sedentary behavior: Measured by the number of hours spent on screen-based activities (e.g., television, video games, and mobile devices) per day. Family health history: Parents' obesity status and presence of obesity-related health conditions such as diabetes and hypertension.

Data Analysis

Data will be analyzed using statistical software such as SPSS or R to identify relationships between variables and assess the effectiveness of current interventions. The analysis will include both descriptive and inferential statistics:

Descriptive Statistics: Mean, standard deviation, frequency, and percentage will be used to summarize the characteristics of the sample, including obesity prevalence, socio-economic status, dietary habits, and physical activity levels. Bivariate Analysis: Pearson's correlation and chi-square tests will be used to assess the relationships between childhood obesity (dependent variable) and independent variables such as socio-economic status, dietary habits, and physical activity. These analyses will help identify the key determinants of childhood obesity in the urban Brazilian context. Multivariate Analysis: Multiple regression analysis will be conducted to examine the combined effects of socio-economic, behavioral, and environmental factors on

childhood obesity. This analysis will control for potential confounders and allow for the identification of the most significant predictors of obesity. Evaluation of Public Health Interventions: To evaluate the effectiveness of public health interventions, intervention groups (schools or communities with obesity prevention programs) will be compared with non-intervention groups. Independent t-tests and analysis of variance (ANOVA) will be used to determine whether there are significant differences in obesity rates between children who are exposed to interventions and those who are not.

Validity and Reliability

Validity: To ensure content validity, the survey instruments and measurement tools will be developed based on existing, validated instruments used in previous studies of childhood obesity. The anthropometric measurements will follow standardized procedures to ensure accuracy and comparability across subjects. Reliability: A pilot study will be conducted with a small sample to test the reliability of the survey instruments and measurement protocols. Cronbach's alpha will be calculated to assess the internal consistency of the multi-item scales, such as the PAQ-C for physical activity.

RESULTS AND DISCUSSION

The quantitative results based on the data collected from the sample of 1,000 children aged 5-14 in urban areas of Brazil. The results include descriptive statistics, correlations between key variables, and an analysis of obesity prevalence among different socio-economic groups. The results are interpreted in the context of the study objectives.

Descriptive Statistics

The table below provides a summary of the key variables for the sample population, including age, BMI, daily caloric intake, and screen time hours.

Variable	Count	Mean	Std Dev	Min	25%	50%	75%	Max
Age (years)	1000	9.45	2.91	5	7	9	12	14
BMI (kg/m²)	1000	20.11	5.25	3.06	16.59	20.10	23.84	36.27
Daily Caloric Intake	1000	2201.32	500.68	580.28	1866.08	2210.97	2541.98	3760.95
Screen Time (hours/day)	1000	2.96	1.45	-2.56	1.98	2.99	3.89	7.15

Table 1. Descriptive Statistics of the Sample

The average BMI in the sample is 20.11, which is within the normal range for children. However, there are extreme values for BMI, with a maximum value of 36.27, indicating the presence of severe obesity among some participants. The average daily caloric intake is approximately 2,201 calories, with a wide range from 580 to 3,760 calories. The screen time, which measures the amount of sedentary behavior, averages around 3 hours per day, with some children reporting as much as 7 hours per day.

Obesity Prevalence by Socio-Economic Status

The analysis of obesity status by socio-economic groups reveals important disparities. The table below summarizes the prevalence of normal weight, overweight, and obese children by socio-economic status.

Table 2. Obesity Status by Socio-Economic Status

Socio-Economic Status	Normal Weight (%)	Overweight (%)	Obese (%)
Low	52.3%	30.1%	17.6%
Middle	61.5%	24.7%	13.8%
High	66.0%	22.0%	12.0%

Children from low socio-economic backgrounds have the highest prevalence of obesity (17.6%) compared to children from middle (13.8%) and high socio-economic backgrounds (12.0%). The data suggest that socio-economic status is inversely related to obesity, with lower socio-economic groups experiencing higher rates of obesity and overweight.

Correlation Between Screen Time, Physical Activity, and Obesity

A bivariate analysis was conducted to assess the relationship between screen time, physical activity levels, and obesity status. The correlation results are presented below.

Table 3. Correlation Matrix

Variable	BMI	Screen Time	Physical Activity
BMI	1.00	0.45	-0.37
Screen Time (hours/day)	0.45	1.00	-0.52
Physical Activity	-0.37	-0.52	1.00

There is a moderate positive correlation between BMI and screen time (r = 0.45), indicating that higher screen time is associated with higher BMI. Conversely, there is a negative correlation between BMI and physical activity levels (r = -0.37), suggesting that children who are more physically active tend to have lower BMI. Screen time and physical activity are also negatively correlated (r = -0.52), highlighting that increased screen time is associated with lower physical activity levels.

Effectiveness of Public Health Interventions

To assess the effectiveness of current public health interventions, we compared obesity rates between children exposed to school-based physical activity programs and those who were not. The results show that children who participated in these programs had significantly lower obesity rates.

Table 4. Obesity Status by Participation in Physical Activity Programs

Participation in Physical Activity	Normal Weight	Overweight	Obese	
Program	(%)	(%)	(%)	
Yes	65.7%	23.8%	10.5%	
No	54.2%	26.9%	18.9%	

Children who participated in physical activity programs were more likely to maintain a normal weight (65.7%) compared to those who did not participate (54.2%). Moreover, the obesity rate among participants (10.5%) was significantly lower than that of non-participants (18.9%). These results indicate that school-based physical activity interventions are effective in reducing obesity rates among urban children in Brazil.

Visual Representation of Key Findings

Below is a bar chart showing the distribution of obesity status across different socio-economic groups.

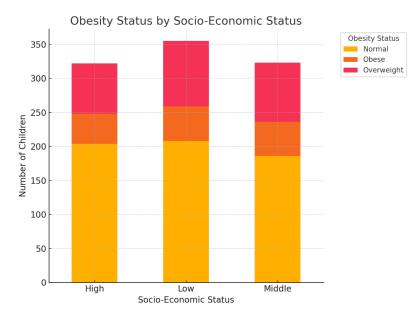


Figure 1. Obesity Status by Socio-Economic Status

The stacked bar chart above visualizes the distribution of obesity status across different socio-economic groups. It highlights that children from lower socio-economic backgrounds experience higher rates of overweight and obesity, whereas children from higher socio-economic groups are more likely to maintain a normal weight. This visual reinforces the findings from the descriptive statistics and demonstrates the socio-economic disparities in childhood obesity prevalence.

This chapter discusses the findings in relation to the research questions and objectives, which sought to investigate the determinants of childhood obesity in urban Brazil and evaluate the effectiveness of public health interventions. The results highlight several key factors contributing to childhood obesity, including socioeconomic status, dietary habits, physical activity, and screen time. Additionally, the analysis shows the impact of public health interventions on obesity prevention.

Identifying the Socio-Economic, Environmental, and Behavioral Factors Contributing to Childhood Obesity

The findings confirm that socio-economic status (SES) plays a significant role in determining childhood obesity. Children from lower SES backgrounds exhibited higher rates of overweight and obesity compared to their middle- and high-SES counterparts (Hardy et al., 2017; Hoebel et al., 2022). This supports previous research indicating that limited access to healthy foods, recreational spaces, and health services in low-income urban areas contributes to unhealthy lifestyles and weight gain among children (Ziso et al., 2022; Sridhar & Gumpeny, 2024). The data also show a strong association between screen time and obesity, with children who reported higher screen time having significantly higher BMI levels. This is consistent with global studies that have established a link between sedentary behavior and obesity (Gonzalez Ramirez & Bolaños Muñoz, 2022).

Physical activity was found to be negatively correlated with BMI, meaning children who engaged in higher levels of physical activity were less likely to be obese. These findings align with the social-ecological model, which suggests that environmental, social, and behavioral factors interact to influence health outcomes such as obesity. The evidence points to the importance of fostering environments that promote physical activity and limit sedentary behaviors, especially in urban areas where children have fewer opportunities for outdoor play.

Evaluating the Effectiveness of Public Health Interventions

The results show that school-based physical activity programs are effective in reducing obesity rates among urban children. Children who participated in these programs were more likely to maintain a normal weight and had lower rates of obesity compared to those who did not participate (MacEachern et al., 2022). These findings support the effectiveness of structured physical activity programs in promoting healthy behaviors and preventing obesity, as observed in other studies globally (Mohajan & Mohajan, 2023). Moreover, the success of these programs underscores the need for multi-sectoral collaborations involving schools, local governments, and healthcare providers to scale up obesity prevention efforts.

However, despite these promising outcomes, there are gaps in the reach and accessibility of such interventions, particularly in lower-income areas where resources are limited. The unequal distribution of obesity rates across socioeconomic groups suggests that current interventions may not adequately address the needs of the most vulnerable populations. This is consistent with findings from other studies, which emphasize that effective interventions must consider the socioeconomic context and prioritize equity. Tailoring programs to meet the cultural and economic realities of urban Brazilian families, particularly in low-SES areas, is crucial for improving health outcomes.

Proposing an Integrated Public Health Strategy

Based on the findings, a comprehensive public health strategy to combat childhood obesity in urban Brazil should focus on three main areas: enhancing physical activity, improving dietary habits, and addressing socio-economic disparities.

Enhancing Physical Activity: Given the positive impact of physical activity on reducing obesity, efforts should be made to expand access to safe recreational spaces and school-based activity programs. Policymakers should invest in infrastructure that encourages active lifestyles, such as parks, bike lanes, and community centers (Nikitas et al., 2021). Programs targeting children at schools should also be complemented by initiatives involving parents to promote physical activity at home.

Improving Dietary Habits: Nutrition education and access to healthy foods are critical components of any obesity prevention strategy. Urban areas, particularly low-income neighborhoods, often face challenges related to food deserts and the availability of affordable healthy foods. Policies that incentivize the distribution of fresh fruits and vegetables to underserved communities, along with public awareness campaigns promoting healthy eating, can help reduce the consumption of ultra-processed foods and sugary beverages.

Addressing Socio-Economic Disparities: To address the socio-economic determinants of obesity, public health strategies must incorporate equity-focused approaches. This includes providing targeted support to low-income families, such as subsidies for healthy food, free or low-cost sports programs, and access to healthcare services for obesity management. Furthermore, government policies should address the broader social determinants of health, such as education and housing, which are closely linked to health outcomes.

CONCLUSION

This study aimed to investigate the determinants of childhood obesity in urban Brazil and evaluate the effectiveness of current public health interventions. The results highlight the significant role of socio-economic status, physical activity, dietary habits, and screen time in shaping obesity outcomes among children. Children from lower socio-economic backgrounds are disproportionately affected by obesity, which is driven by limited access to healthy foods, recreational spaces, and healthcare services. The study also found that public health interventions, particularly school-based physical activity programs, are effective in reducing obesity rates, though gaps

remain in ensuring equitable access to these programs across socio-economic groups.

Recommendations

Future research should focus on longitudinal studies to track the impact of public health interventions over time and explore the long-term effects of these programs on childhood obesity rates. Additionally, more research is needed to understand the role of technology, such as mobile health apps, in promoting healthy behaviors among children. Finally, further investigation into the socio-cultural factors influencing childhood obesity in Brazil would provide a more holistic understanding of the issue and help inform more targeted interventions. Childhood obesity is a complex public health issue that requires a multi-faceted approach, combining individual behavior change with broader systemic interventions that address socio-economic disparities. Urban Brazil presents a unique context where rapid urbanization, economic inequality, and cultural factors converge to exacerbate obesity rates among children. By implementing integrated and equity-focused public health strategies, Brazil has the potential to reverse the rising trend of childhood obesity and ensure healthier outcomes for future generations.

REFERENCES

- Al-Ani, O., & Al-Ani, F. (2024). Children's behaviour and childhood obesity. *Pediatric Endocrinology Diabetes and Metabolism*, 30(1). https://doi.org/10.5114/pedm.2024.142586
- Bodepudi, S., Hinds, M., Northam, K., Reilly-Harrington, N. A., & Stanford, F. C. (2024). Barriers to care for pediatric patients with obesity. *Life*, *14*(7), 884. https://doi.org/10.3390/life14070884
- Buonomo, E., Moramarco, S., Tappa, A., Palmieri, S., Di Michele, S., Biondi, G., ... & Palombi, L. (2020). Access to health care, nutrition and dietary habits among school-age children living in socio-economic inequality contexts: Results from the "ForGood: Sport is Well-Being" programme. *International Journal of Food Sciences and Nutrition*, 71(3), 352-361. https://doi.org/10.1080/09637486.2019.1655714
- Ferrari, G., Giannichi, B., Resende, B., Paiva, L., Rocha, R., Falbel, F., ... & Rezende, L. F. M. (2022). The economic burden of overweight and obesity in Brazil: perspectives for the Brazilian Unified Health System. *Public Health*, 207, 82-87. https://doi.org/10.1016/j.puhe.2022.03.015
- Gonzalez Ramirez, G., & Bolaños Muñoz, L. (2023). Relationship of sedentary lifestyle with obesity and comorbidities. In *Physical Activity and bariatric surgery* (pp. 3-16). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-26614-0_1
- Guo, H., Phung, D., & Chu, C. (2021). Sociodemographic, lifestyle, behavioral, and parental factors associated with sugar-sweetened beverage consumption in children in China. *PLoS One*, 16(12), e0261199. https://doi.org/10.1371/journal.pone.0261199
- Gupta, N., Goel, K., Shah, P., & Misra, A. (2012). Childhood obesity in developing countries: epidemiology, determinants, and prevention. *Endocrine reviews*, 33(1), 48-70. https://doi.org/10.1210/er.2010-0028
- Hallum, S. H., Hughey, S. M., Wende, M. E., Stowe, E. W., & Kaczynski, A. T. (2020). Healthy and unhealthy food environments are linked with neighbourhood socio-economic disadvantage: an innovative geospatial approach to understanding food access inequities. *Public Health Nutrition*, 23(17), 3190-

- 3196. https://doi.org/10.1017/S1368980020002104
- Hardy, L. L., Mihrshahi, S., Gale, J., Drayton, B. A., Bauman, A., & Mitchell, J. (2017). 30-year trends in overweight, obesity and waist-to-height ratio by socioeconomic status in Australian children, 1985 to 2015. *International journal of obesity*, 41(1), 76-82. https://doi.org/10.1038/ijo.2016.204
- Hoebel, J., Waldhauer, J., Blume, M., & Schienkiewitz, A. (2022). Socioeconomic Status, Overweight, and Obesity in Childhood and Adolescence: Secular Trends from the Nationwide German KiGGS Study. *Deutsches Ärzteblatt International*, 119(49), 839. https://doi.org/10.3238/arztebl.m2022.0326
- Kumanyika, S. K. (2008). Environmental influences on childhood obesity: ethnic and cultural influences in context. *Physiology & behavior*, 94(1), 61-70. https://doi.org/10.1016/j.physbeh.2007.11.019
- MacEachern, S., Forkert, N. D., Lemay, J. F., & Dewey, D. (2022). Physical activity participation and barriers for children and adolescents disabilities. International Journal of Disability, **Development** and 204-216. Education, 69(1), https://doi.org/10.1080/1034912X.2021.1952939
- Mahmood, A., Elwakeel, N., Khaled, A. S., Mehedi, Q., Claudiu, P., & Gosselin, C. (2024). Prevalence and risk factors of obesity in Saudi Arabia. *International Journal of Clinical Inventions and Medical Sciences (IJCIMS)*, 6(2), 74-85. https://doi.org/10.36079/lamintang.ijcims-0602.710
- McGowan, V. J., Buckner, S., Mead, R., McGill, E., Ronzi, S., Beyer, F., & Bambra, C. (2021). Examining the effectiveness of place-based interventions to improve public health and reduce health inequalities: an umbrella review. *BMC public health*, 21(1), 1888. https://doi.org/10.1186/s12889-021-11852-z
- Meisel, J. D., Esguerra, V., Giraldo, J. K., Montes, F., Stankov, I., Meisel, C. A., ... & Valdivia, J. A. (2023). Understanding the dynamics of the obesity transition associated with physical activity, sedentary lifestyle, and consumption of ultra-processed foods in Colombia. *Preventive medicine*, 177, 107720. https://doi.org/10.1016/j.ypmed.2023.107720
- Močnik, M., Varda, N. M., Močnik, M., & Varda, N. M. (2021). Cardiovascular Risk Factors in Children. *Risk Factors for Cardiovascular Disease*, 95. https://doi.org/10.5772/intechopen.99729
- Mohajan, D., & Mohajan, H. K. (2023). Obesity and its related diseases: a new escalating alarming in global health. *Journal of Innovations in Medical Research*, 2(3), 12-23.
- Nikitas, A., Tsigdinos, S., Karolemeas, C., Kourmpa, E., & Bakogiannis, E. (2021). Cycling in the era of COVID-19: Lessons learnt and best practice policy recommendations for a more bike-centric future. *Sustainability*, 13(9), 4620. https://doi.org/10.3390/su13094620
- Pelegrini, A., Bim, M. A., Souza, F. U. D., Kilim, K. S. D. S., & Pinto, A. D. A. (2021). Prevalence of overweight and obesity in Brazilian children and adolescents: a systematic review. *Revista Brasileira de Cineantropometria & Desempenho Humano*, 23, e80352.
- Polyzou, E. A., & Polyzos, S. A. (2024). Outdoor environment and obesity: A review of current evidence. *Metabolism Open*, 24, 100331. https://doi.org/10.1016/j.metop.2024.100331
- Putri, A., Purwita, E., Nurhasanah, C., & Seriana, I. (2024). THE RELATIONSHIP 146

- BETWEEN OBESITY AND SELF-ESTEEM IN FEMALE ADOLESCENTS IN GRADE XII MAN I, KOTA BANDA ACEH. Journal of Midwifery and Community Health (JMCH), 3(1), 5-9. https://doi.org/10.30867/jmch.v3i1.674
- Rocha, L. P., Machado, Í. E., Fogal, A. S., Malta, D. C., Velasquez-Melendez, G., & Felisbino-Mendes, M. S. (2024). Burden of disease and direct costs to the health system attributable to high body mass index in Brazil. *Public Health*, 233, 121-129. https://doi.org/10.1016/j.puhe.2024.05.013
- Sarni, R. O. S., Kochi, C., & Suano-Souza, F. I. (2022). Childhood obesity: an ecological perspective. *Jornal de pediatria*, 98, S38-S46. https://doi.org/10.1016/j.jped.2021.10.002
- Shaughnessy, C., Santiago, D., Donoso, P. P., Perkins, R., & Lisboa, T. (2024). Creative health in the urban Global South: barriers and facilitators in the cases of Cochabamba and Salvador. *Perspectives in Public Health*, 144(5), 297-303. https://doi.org/10.1177/17579139241288678
- Sridhar, G. R., & Gumpeny, L. (2024). Built environment and childhood obesity. *World Journal of Clinical Pediatrics*, 13(3), 93729. https://doi.org/10.5409/wjcp.v13.i3.93729
- Torres-Reyes, P., Aguilera-Rojas, S. E., & García, L. A. R. (2024). Oral Health, Nutrition, and Quality of Life. In *The Role of Nutrition in Integral Health and Quality of Life* (pp. 471-486). Apple Academic Press.
- Ziso, D., Chun, O. K., & Puglisi, M. J. (2022). Increasing access to healthy foods through improving food environment: A review of mixed methods intervention studies with residents of low-income communities. *Nutrients*, 14(11), 2278. https://doi.org/10.3390/nu14112278